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Abstract

Tracking control of a class of nonlinear uncertain, multi-
input, multiple-output systems is addressed in this pa-
per. The control system architecture uses neural net-
works for function approximation, certainty equivalent
control inputs to cancel plant dynamics and smoothed
sliding mode control to insure that the trajectories re-
main bounded. Lyapunov analysis is used to derive
equations for the sliding mode control, neural network
training, and to show uniform ultimate boundedness of
the closed loop system. A simple simulation example is
used to illustrate control system performance.

1 Introduction

Control of uncertain, nonlinear systems is a problem
that has been approached in a variety of ways. Two of
the most common approaches, especially in the area of
ight control are: 1) gain scheduled control and 2) adap-
tive control. Gain scheduled approaches often expend
a large amount of e�ort to model the plant, thus re-
ducing the uncertainties. Adaptive control approaches
deal with parametric uncertainties by changing the con-
trol characteristics as data is gathered. However, these
adaptations are typically made without memory of the
events which precipitated the changes. Neural control
di�ers from these two traditional approaches in that it
incorporates a means for learning from gathered data
and remembering what has been learned.

By neural control we mean control system structures
which incorporate neural networks as spatially depen-
dent mappings to a�ect the commands computed by the
control system. Neural control is of much current inter-
est because it provides a means to address control prob-
lems without need for large amounts of a priori model
information, and because it incorporates a memory of
events that relieves the need for continual re-adaptation.
The motivation for the use of neural control systems is
the potential of learning to control a plant with less ef-
fort spent on a priori system modeling, with enhanced
robustness to gradual temporal changes in the system

dynamics, and improved overall performance for sys-
tems with state dependent nonlinearities.

Neural control is based on on-line learning which takes
the form of weight adjustments based on data as it be-
comes available. The network must be capable of using
the information contained in the data to learn system
characteristics. However, one of the di�culties with
networks (especially multi-layer perceptrons - MLPs)
is that they often learn to better �t data in one area of
a domain at the expense of the �t in other regions of
the domain. In e�ect, they forget what was previously
learned in an e�ort to learn new information. This ten-
dency has been referred to as non-local learning [1, 11]
or temporal crosstalk [8] and it's impact in the context
of control has also received attention in recent years
[1, 2, 3, 8, 9].

In this paper we present a control design approach for
a class of nonlinear, a�ne, Multiple-Input Multiple-
Output (MIMO) plants where the number of inputs is
the same as the number of outputs. The control objec-
tive is to achieve tracking of some desired state trajec-
tories. An adaptive bounding technique is employed to
handle the unknown network reconstruction error and
su�cient stabilizability conditions on the unknown con-
trol multiplier functions are derived. The Lyapunov
synthesis approach is used to derive a neural control
system with guaranteed stability properties.

2 Problem Formulation

To illustrate the design and analysis approach we con-
sider a two input, two state system where the states are
available for measurement. We de�ne the dynamics as

_x = w1(x; z) + w2(x; z)u
�
1 + w3(x; z)u

�
2 (1)

_z = w4(x; z) + w5(x; z)u
�
1 + w6(x; z)u

�
2 (2)

where x and z are the states, (x; z) 2 R
2 , and u�1; u

�
2

are the control inputs. The dynamics of the system
are represented by unknown functions w1; w4, and by
unknown control multipliers w2; w3; w5; w6. To prevent



loss of stabilizability we assume that each of the con-
trol multiplier functions is positive and has known lower
bound represented with a subscript L,

w2(x; z) � w2L > 0 w3(x; z) � w3L > 0

w5(x; z) � w5L > 0 w6(x; z) � w6L > 0

8x; z 2 
, where 
 � R
2 is a domain of interest. For the

derivation of controls that will follow, we also assume
that two of the control multipliers have known upper
bounds de�ned using a subscript U .

w3(x; z) � w3U w5(x; z) � w5U (3)

The results shown in this paper can also be shown to
hold for the cases where sign(w2w3) = sign(w5w6) =
+1 or sign(w2w5) = sign(w3w6) = +1.

Many ight control systems can be represented by the
class of nonlinear systems described in equations (1) and
(2). Although aircraft dynamics are inherently nonlin-
ear, ight control system designs have historically relied
on linear time invariant models of the form

_x = Ax+Bu

y = Cx:

The matrices (A,B,C) can vary greatly from one ight
condition to another, so designs are typically carried
out at a number of points in the ight envelope and
then blended together. This has worked well because
aircraft dynamics are dominantly a function of states
such as dynamic pressure and angle of attack. These
matrices are very seldom represented as a function of the
controls themselves because the controls respond faster
than states and control e�ectiveness (represented by B)
is predominantly independent of the control input.

Since the scheduling of stability and control derivatives
can be very nonlinear, aircraft dynamics require models
that are nonlinear functions of the state and a�ne with
respect to the control:

_x = f(x) + g(x)u: (4)

Next, we proceed to the design of a stable neural con-
troller for the system described by (1),(2). Each of the
two control inputs, u�1 and u

�
2, in equations (1) and (2),

is generated by the control system and consists of two
components:

u�1 = u1 + us1 (5)

u�2 = u2 + us2 (6)

where the u1 and u2 are certainty equivalent type con-
trol inputs and us1 and us2 are sliding mode type con-
trol inputs. The control system objective is to have the
states track desired reference trajectories, xd and zd,
which are provided externally.

It is often the case that a control designer has a rough
estimate of the characteristics of the plant dynamics ei-
ther through analytical modeling or thorough empirical
studies. The control approach being used here directly
allows for this type of information to be used [6, 7],
however, for notational simpli�cation, the functions in
equation (1) are assumed to be completely unknown.

Each of the unknown functions, wi, in equation (1) and
(2) are modeled using a linearly parameterized combi-
nation of Radial Basis Functions (RBFs). The approx-
imations are represented by

ŵi(x; z) = �Twi�(x; z): (7)

where � are the basis functions and �wi is a column
vector of parameters. The parameter vector, �wi , has
k elements where k is the number of basis functions
used. We are using the same basis functions for each
approximation because it makes the notation simpler,
however this is not required.

We de�ne the best approximation using

��wi = arg min
�wi2R

k

f sup
(x;z)2


jwi(x; z)� �wi�(x; z)jg (8)

and

w�
i (x; z) = ��wi�(x; z): (9)

We also de�ne the parameter estimation error as ~�wi =
�wi � ��wi .

Unless the actual functions, wi are linear combinations
of the � basis functions, there will be errors remaining
in each approximation after �nding the best �wi vec-
tor. The error which remains after the best �t has been
achieved is referred to as the reconstruction error and
is given by

�wi(x; z) = wi(x; z)� w�
i (x; z): (10)

To remove the necessity to assume a priori knowledge
of a bound on the reconstruction error, we develop an
adaptive bounding scheme where the bound on �wi(x; z)
is estimated on-line. Let

 �wi = sup
(x;z)2


j�wi(x; z)j (11)

be the unknown bound on the reconstruction error. The
unknown parameter bound estimation error, ~ wi(t), is
de�ned as

~ wi(t) =  wi(t)�
� �wi (12)

where � �wi := maxf �wi ;  
o
wi
g and  wi(t) is the on-line

estimate of the bound. The constant  owi is a design
parameter that will appear in the adaptation law for
updating  wi(t).



Now we de�ne the tracking errors

ex = x� xd (13)

ez = z � zd; (14)

which are used to de�ne a sliding mode surface vector
as

�s =

�
s1
s2

�
=

�
ex + c1

R
exd�

ez + c2
R
ezd�

�
(15)

where c1 and c2 are positive design constants. By de�n-
ing the sliding mode quantity in this way, we have a
vector of �ltered errors which induce integral control
action [5, 10].

The problem we have described is tracking control for
a MIMO, a�nely represented model with parametric
uncertainty due to unknown ��wi , and bounding uncer-
tainty due to the unknown reconstruction error bounds,
 �wi . The control design approach followed in this paper
is to use neural networks to approximate the unknown
system nonlinearities wi, vector sliding mode control
with adaptive bounding to insure boundedness, and in-
tegral action to improve transient response.

3 Neural Control Design

Consider the Lyapunov function

V =
1

2
sT s+

6X
i=1

~�Twi
~�wi

2
+

6X
i=1

~ 2
wi

2
(16)

where  > 0 is the adaptive gain.

Taking the derivative of equation (16) and substituting
from equations (13), (14), and (15) we get

_V = s1f _x� _xd + c1(x� xd)g+ s2f _z � _zd

+c2(z � zd)g+

6X
i=1

f
~�Twi

_�wi


+
~ wi

_ wi


g: (17)

Using the control equations (5) and (6), the dynamics
from equations (1) and (2) and adding and subtract-
ing some terms which sum to zero, we can write the
Lyapunov derivative as

_V = s1f(w1 + w2u1 + w3u2 + w2us1

+w3us2)� _xd + c1ex

+(ŵ2u1 + ŵ3u2)� (ŵ2u1 + ŵ3u2)g

+s2f(w4 + w5u1 + w6u2 + w5us1

+w6us2)� _zd + c2ez

+(ŵ5u1 + ŵ6u2)� (ŵ5u1 + ŵ6u2)g

+
6X

i=1

f
~�Twi

_�wi


+
~ wi

_ wi


g (18)

where the functional dependencies of wi and ŵi on x; z;
and �wi have not been written in order to streamline
the notation.

We consider a certainty equivalent type control law
which can be found by solving the following two simul-
taneous equations for u1 and u2.

ŵ2u1 + ŵ3u2 = �s1 � ŵ1 + _xd � c1ex (19)

ŵ5u1 + ŵ6u2 = �s2 � ŵ4 + _zd � c2ez (20)

The �rst terms on the right hand side help make the
Lyapunov derivative negative, the second terms attempt
to cancel the unknown nonlinearities in the Lyapunov
derivative, and the last two terms subtract out terms
that are known. Using (19) and (20) in equation (18),
and regrouping we obtain

_V = s1f(w1 � w�
1) + (w�

1 � ŵ1) + [(w2 � w�
2)

+(w�
2 � ŵ2)]u1 + [(w3 � w�

3) + (w�
3 � ŵ3)]u2

+w2us1 + w3us2 � s1g

s2f(w4 � w�
4) + (w�

4 � ŵ4) + [(w5 � w�
5)

+(w�
5 � ŵ5)]u1 + [(w6 � w�

6) + (w�
6 � ŵ6)]u2

+w5us1 + w6us2 � s2g

+

6X
i=1

f
~�Twi

_�wi


+
~ wi

_ wi


g (21)

Using the reconstruction error bounds of equation (11)
we can write a bound on the Lyapunov derivative as

_V � � �w1
js1j+ � �w2

js1u1j+ � �w3
js1u2j

�~�Tw1
�s1 � ~�Tw2

�s1u1 � ~�Tw3
�s1u2 + s1w2us1

+s1w3us2 � s21 +
� �w4

js2j+ � �w5
js2u1j

+ � �w6
js2u2j � ~�Tw4

�s2 � ~�Tw5
�s2u1

�~�Tw6
�s2u2 + s2w5us1 + s2w6us2

�s22 +
6X

i=1

f
~�Twi

_�wi


+
~ wi

_ wi


g (22)

The inequality in (22) includes terms which are pos-
itive and which include unknown reconstruction error
bounds � �wi . Also included are terms involving sliding
mode controls us1 and us2. Our objective in de�ning
the sliding mode control is to cancel the positive terms
using the estimates of the reconstruction error bounds,
 wi . However, we want to insure that the terms in-
volving sliding mode controls are as small as possible to
maintain the bound on the Lyapunov derivative. Thus,
we de�ne the sum of the four sliding mode controls as

[s1w2us1 + s1w3us2 + s2w5us1 + s2w6us2 ] �

�s1 w1
tanh(

s1

�
)� s1u1 w2

tanh(
s1u1

�
)

�s1u2 w3
tanh(

s1u2

�
)� s2 w4

tanh(
s2

�
)

�s2u1 w5
tanh(

s2u1

�
)

�s2u2 w6
tanh(

s2u2

�
) (23)



where the inequality must hold for any value that
the uncertain functions, w2; w3; w5, and w6, may take
on. Next, we will show how the sliding mode controls
which satisfy inequality (23) help achieve the Lyapunov
derivative properties that we desire. After the Lya-
punov analysis we will return to (23) and show how
to solve for the individual sliding mode control compo-
nents, us1 and us2.

Substituting (23) into (22) we obtain

_V � � �w1
js1j � s1 w1

tanh(
s1

"
) + � �w2

js1u1j

�s1u1 w2
tanh(

s1u1

"
) + � �w3

js1u2j

�s1u2 w3
tanh(

s1u2

"
) + � �w4

js2j

�s2 w4
tanh(

s2

"
) + � �w5

js2u1j

�s2u1 w5
tanh(

s2u1

"
) + � �w6

js2u2j

�s2u2 w6
tanh(

s2u2

"
)� ~�Tw1

�s1 � ~�Tw2
�s1u1

�~�Tw3
�s1u2 � ~�Tw4

�s2 � ~�Tw5
�s2u1 � ~�Tw6

�s2u2

�s21 � s22 +

6X
i=1

f
~�Twi

_�wi


+
~ wi

_ wi


g (24)

From equation (12) we know that  wi(t) =
~ wi(t)+

� �wi .
Making this substitution in (24) and regrouping terms
we can write

_V � �s21 � s22 +

3X
i=1

f � �wi [js1qj � s1q tanh(
s1q

"
)]

+
~�Twi


[ _�wi � �s1q]

+
~ Twi


[ _ wi � s1q tanh(
s1q

"
)]g

+

6X
i=4

f � �wi [js2qj � s2q tanh(
s2q

"
)]

+
~�Twi


[ _�wi � �s2q]

+
~ Twi


[ _ wi � s2q tanh(
s2q

"
)]g (25)

where q = 1 for i = 1; 3, q = u1 for i = 2; 5, and q = u2
for i = 3; 6.

To bound the terms involving � �i , we use a property of
the hyperbolic tangent [6] according to which for any
� 2 R and any constant � > 0

j�j � � tanh(
�

�
) � �� (26)

where � = :2786.

The Lyapunov analysis yields the adaptive laws for �wi

and  wi , which are given by

_�wi = f�sjq � �(�wi � �owi)g (27)

_ wi = fsjq tanh(
sjq

�
)� �( wi �  owi)g (28)

where j = 1 for i = 1; 2; 3, j = 2 for i = 4; 5; 6, and q
is de�ned as before. The small positive constant, �, is
a design variable which introduces a leakage term into
the adaptive law for the purpose of guaranteeing the
boundedness of the parameter estimates. The terms
�owi and  owi are also design constants that represent
initial estimates of the unknown parameters ��wi and
 �wi respectively. In the absence of any such a priori

information, �owi and  
o
wi

can be set to zero.

Using (26) and substituting equations (27) and (28) into
(25), the Lyapunov derivative bound is given by

_V � �s21 � s22 +

6X
i=1

f�� � wi � �~�Twi(�wi � �owi)g

�

6X
i=1

f� ~ wi( wi �  owi)g: (29)

The Lyapunov bound given by (29) can be written as

_V � �cV + � (30)

where c = min(2; �) and

� =

6X
i=1

f�� � �wi +
�

2
[j��wi � �owi j

2

+j �wi �  owi j
2]g:

Although _V is not negative semi-de�nite, it is clear from
(30) that V is bounded. Since the Lyapunov function
was de�ned as the sum of quadratic sliding mode and
parameters error terms, we can conclude that the sliding
mode values and parameter errors are all bounded. If we

de�ne � >
q
2�
c
and use inequality (30), the magnitude

of s1(t) and s2(t) can be shown to be bounded by � [6].

The stability properties just described are dependent
on the existence of sliding mode controls which satisfy
inequality (23). One way to solve for controls, us1 and
us2, is given below.

We �rst separate (23) into

s1w2us1 + s1w3us2 � �s1 w1
tanh(

s1

�
)

�s1u1 w2
tanh(

s1u1

�
)

�s1u2 w3
tanh(

s1u2

�
) (31)

and

s2w5us1 + s2w6us2 � �s2 w4
tanh(

s2

�
)

�s2u1 w5
tanh(

s2u1

�
)

�s2u2 w6
tanh(

s2u2

�
): (32)



Next we de�ne the controls as

us1 = �K1 tanh(
s1

�
)�K2u1 tanh(

s1u1

�
)

�K3u2 tanh(
s1u2

�
) (33)

us2 = �K4 tanh(
s2

�
)�K5u1 tanh

s2u1

�

�K6u2 tanh(
s2u2

�
) (34)

where Ki, for i = 1; :::6, are gains to be determined.
Substituting (33) and (34) into (31) and (32) we can
write

�s1fw2K1 tanh(
s1

�
) + u1w2K2 tanh(

s1u1

�
)

+u2w2K3 tanh(
s1u2

�
) + w3K4 tanh(

s2

�
)

+u1w3K5 tanh(
s2u1

�
) + u2w3K6 tanh(

s2u2

�
)g �

�s1f w1
tanh(

s1

�
) + u1 w2

tanh(
s1u1

�
)

+u2 w3
tanh(

s1u2

�
)g (35)

and

�s2fw5K1 tanh(
s1

�
) + u1w5K2 tanh(

s1u1

�
)

+u2w5K3 tanh(
s1u2

�
) + w6K4 tanh(

s2

�
)

+u1w6K5 tanh(
s2u1

�
) + u2w6K6 tanh(

s2u2

�
)g �

�s2f w4
tanh(

s2

�
) + u1 w5

tanh(
s2u1

�
)

+u2 w6
tanh(

s2u2

�
)g: (36)

To illustrate the procedure we consider the terms re-
lated to the gains K1 and K4. Combining terms in
(35), it can be seen that K1 and K4 need to be selected
such that the following inequality is satis�ed.

�s1w2K1 tanh(
s1

�
)� s1w3K4 tanh(

s2

�
) �

�s1 w1
tanh(

s1

�
) (37)

Similarly using (36) we obtain

�s2w5K1 tanh(
s1

�
)� s2w6K4 tanh(

s2

�
) �

�s2 w4
tanh(

s2

�
): (38)

We seek gains, K1 and K4, that will satisfy (37) and
(38) for all evaluations of the functions, w2; w3; w5, and
w6. If we divide all terms in (37) by s1 tanh(

s1
�
) and all

the terms in (38) by s2 tanh(
s2
�
) we get

�w2K1 � w3K4R � � w1
(39)

�w5K1

R
� w6K4 � � w4

(40)

where R is de�ned by

R =
tanh( s2

�
)

tanh( s1
�
)
: (41)

Since we don't know the sign of R, we solve for the worst
case bounds for K1 and K4.

K1 �
 w1

+ w3K4jRj

w2
(42)

K4 �
 w4

+ w5K1

jRj

w6
(43)

We can see from (42) and (43) that the gains, K1 and
K4, are at their largest values when w3 and w5 take
on their largest values and when w2 and w6 take on
their smallest values. Since it is su�cient that equality
applies to (42) and (43), we solve to �nd the gains.

K1 = f1�
w5Uw3U

w2Lw6L
g�1f

 w1

w2L
+
w3U w4

jRj

w2Lw6L
g (44)

K4 = f1�
w5Uw3U

w2Lw6L
g�1f

 w4

w6L
+

w5U w1

w2Lw6LjRj
g (45)

Similar equations can be written for gains K2;K5;K3

and K6.

It may be seen that the inverse in equations (44) and
(45) can be unde�ned if w5Uw3U = w2Lw6L. However,
if we restrict our attention to plants where

det

�
w2(x; z) w3(x; z)
w5(x; z) w6(x; z)

�
6= 0 8 (x; z) 2 R2 ; (46)

then equations (44) and (45) are well de�ned. This re-
striction, (46), which is a stabilizability condition, will
hold for plants where u1 has the primary control au-
thority in (1) and u2 has the primary control authority
in (2). It should also be noted that the gains K1:::6

are functions of the s1 and s2 values and therefore an
implicit function of time.

4 Simulation Example

To illustrate the neural control system design, a model
has been extracted from an aircraft simulation and mod-
i�ed to provide some nonlinear characteristics while still
satisfying the restriction given by (46). The truth model
is given by

�
_x
_z

�
=

�
�:839 1:000
�2:556 �1:696

� �
x

z

�
+ (47)

�
:00208 w3(x)
w5(x) :02

� �
u�1
u�2

�

The equations of motion given by (47) can be written
as

_x = w1x(x) + w1z(z) + w2(x)u
�
1 + w3(x)u

�
2

_z = w4x(x) + w4z(z) + w5(x)u
�
1 + w5(x)u

�
2 (48)

where w1x(x) = �0:839x, w1z(z) = z, w2(x) = :00208,
w3(x) = :02 + :0012x2, w4x(x) = �2:556x, w4z(z) =



�1:696z, w5(x) = :13 � :0017x2, w6(x) = :02 are all
unknown functions.

The neural network approximations use 32 RBF basis
functions in an Multi-Resolution Analysis [4] structure
on a domain of [�8; 8]. To illustrate the learning perfor-
mance of the neural network the simulations were ini-
tialized with poor approximations of the truth functions
and as the simulation progressed the approximations
become closer to the true functions. This resulted in
larger control inputs from the certainty equivalent con-
trols and smaller control inputs from the sliding mode.
As the network performance improved, the tracking per-
formance improved as can be seen in Figure 1 where the

plant    
reference

0 5 10 15 20 25

−0.2

0

0.2

x tracking performance

plant    
reference

0 5 10 15 20 25
−0.6

−0.4

−0.2

0

0.2

0.4
z tracking performance

Figure 1: Tracking Performance of the states x(t) and z(t)
with respect to the desired trajectories xd and
zd

dash-dot lines indicate the desired trajectories and the
solid lines are the system states.

The function approximation accuracy improves during
the simulation as can be seen in Figure 2 where the
dashed line is the true function, the solid line is the
initialization, and the dash-dot lines are the approxi-
mations after the simulation has completed. Note that
the function approximation changes are most obvious
in the region of the state space where the system was
forced to track.

5 Conclusion

A neural control approach for a class of nonlinear MIMO
systems has been developed. Lyapunov function analy-
sis been used to insure bounded tracking errors and ro-
bust adaptive methods prevent parameter drift. Results
have been illustrated with a simple MIMO example.
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0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
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Figure 2: Network approximation of the unknown function
w3(x)
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